- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000001000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Gray, Andrew (1)
-
Mozdzer, Thomas (1)
-
Raper, Kirk (1)
-
University, Drexel (1)
-
Watson, Elizabeth (1)
-
Wilbur, Brittany (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Thin layer sediment placement (TLP) is a method to mitigate factors resulting in loss of elevation and severe alteration of hydrology, such as sea level rise and anthropogenic modifications, and prolong the lifespan of drowning salt marshes. However, TLP success may vary due to plant stress associated with reductions in nutrient availability and hydrologic flushing or through the creation of acid sulfate soils. This study examined the influence of sediment grain size and soil amendments on plant growth, soil and porewater characteristics, and greenhouse gas exchange for three key US salt marsh plants: Spartina alterniflora, Spartina patens, and Salicornia pacifica. We found that bioavailable nitrogen concentrations (measured as extractable NH4+-N) and porewater pH and salinity were found to have an inverse relationship with grain size, while soil redox was more reducing in finer sediments. This suggests that utilizing finer sediments in TLP projects will result in a more reduced environment with higher nutrient availability, while larger grain-sized sediments will be better flushed and oxidized. We further found that grain size had a significant effect on vegetation biomass allocation and rates of gas exchange, although these effects were species-specific. We found that soil amendments (biochar and compost) did not subsidize plant growth but were associated with increases in soil respiration and methane emissions. Biochar amendments were additionally ineffective in ameliorating acid sulfate conditions. This study uncovers complex interactions between sediment type and vegetation, emphasizing limitations of soil amendments. The findings aid restoration project managers in making informed decisions regarding sediment type, target vegetation, and soil amendments for successful TLP projects.more » « less
An official website of the United States government
